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Abstract

There is global interest in improving air quality to prevent large number of premature
deaths. Especially in Northern Europe the emission of sulfur dioxides are of major con-
cern. In order to enforce legislation, regular inspection is necessary.
The aim of this thesis was to compare different technologies which are able to remotely
measure sulfur dioxide concentrations and to determine the emissions from an individual
ship. Subsequently, measurements performed from these techniques were compared. Sev-
eral ways to separate compliant and non-compliant ships were discussed. The compliance
rate which these different approaches yielded were reported.
Four techniques which are able to measure fuel sulfur content, DOAS, LIDAR, NDIR and
CRDS, were explained. The uncertainty at commonly encountered emission levels were
merely reported in literature. Measurements from these techniques, which were provided
by (governmental) agencies, showed a lack of validation with known fuel sulfur contents.
The training and validation set were too small to allow supervised classification between
ships sailing on compliant or non-compliant fuel. In order to estimate the number of ships
running on compliant fuel, the two classes were modeled using a bimodal distribution
with a normal and shifted lognormal mode using an EM-algorithm. In this way it was
estimated that only 3 % was non-compliant. This value is low compared to high quality
in-port measurements. It may be caused by several assumptions which were not met. For
example, normality was required but not met.
In order to adequately perform remote sulfur controlling, more emphasis should be on
cross validation. The few examples of cross validation which were present in the data,
showed great discrepancies. The use of longer integration times will allow avoiding any
mixing with other pollution sources in the neighborhood of the measured ship for future
measurements. The use of helicopters, sample canisters or unmanned aerial vehicles can
lower bias. In addition, duplicate set-ups can improve precision from measurements of
remote sulfur fuel content.
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Samenvatting

Er is wereldwijde interesse om luchtkwaliteit te verbeteren, zodat vroegtijdige sterfte te-
gengegaan kan worden. Vooral in Noord-Europa is de emissie van zwaveldioxide vanuit
scheepvaart een groot gezondheidsprobleem. Hoewel er strenge emissienormen zijn, laat
de controle te wensen over.
Verschillende technologiën, die in staat zijn de zwaveldioxide emissie van schepen te me-
ten, werden met elkaar vergeleken. Vervolgens werd de data geanalyseerd die met deze
technieken waren geproduceerd. Verschillende manieren werden gebruikt om de schepen
die niet voldoen aan de wetgeving te kunnen scheiden van degene die dat wel doen.
Vier verschillende technieken die het zwavelgehalte van brandstof van afstand kunnen
meten werden uitgelegd, namelijk DOAS, LIDAR, NDIR en CRDS. De onzekerheid in
de meting van het zwavelgehalte werd nauwelijks gerapporteerd voor gangbare emissies.
Metingen van deze technieken, die werden uitgevoerd door (overheids)organisaties, waren
erg gebrekkig gevalideerd met schepen die een bekende zwavelgehalte hadden. Er waren
daardoor te weinig training en validatiewaarden om gecontroleerde classificatiemethoden
te gebruiken. Deze classificatie tussen schepen die op legale of illegale brandstof varen
werd daardoor bereikt door beide groepen schepen te modelleren. Een bimodale distri-
butie met een normaal verdeelde modus en een verplaatste lognormaal verdeelde modus
werd gebruikt. De parameters van deze distributie werden bepaald met behulp van een
EM-algoritme. Op deze manier werd gevonden dat maar 3 % van de schepen zich niet aan
de wetgeving hield wat betreft zwaveluitstoot. Deze waarde is laag vergeleken met metin-
gen aan boord. Dit kan komen doordat aan verschillende aannames niet werd voldaan.
De zwaveluitstoot had beter gemeten kunnen worden als er meer nadruk was gelegd op
kruisvalidatie. De enkele gevallen van kruisvalidatie die beschikbaar waren gedurende
dit onderzoek, lieten grote discrepanties zien tussen de gemeten en gevalideerde waarden.
Verder onderzoek zou zich moeten richten op het verlengen van de integratietijd en het
voorkomen van het meten van zwaveldioxide en koolstofdioxide uit andere bronnen. Dit
zou kunnen door op volle zee te gaan meten met behulp van drones of helikopters. In-duplo
meten zou ook de precisie kunnen vergroten van de metingen op afstand van zwaveldioxide
uitstoot.

Zoekwoorden

SECA, IMO Annex VI naleving, data analyse, expectation maximization, zwaveldioxide,
koolstofdioxide
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Chapter 1

Introduction

More than 90 % of global transport of commodities is performed by shipping. [1] Half a
billion metric ton of goods are processed in Rotterdam, Europe’s biggest port. [2] The
large volumes of goods being processed and the associated amount of ship movements,
impose an environmental problem. Shipping is a significant contributor to the emission of
several pollutants. Main compounds emitted are carbon dioxide (CO2), nitrogen oxides
(NOx), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur dioxide (SO2),
black carbon (BC) and particulate organic matter (POM). [3] While all these compounds
influences on atmosphere and climate, especially SO2 leads to serious human health issues.
Corbett et al. reported 60,000 cardiopulmonary and lung cancer deaths per year globally
through shipping-related emissions in 2007. [4] The clean air for Europe (CAFE) program
estimated in 2005 that the exposure to air pollution through particulate matter (PM) led
to an approximate 2-year reduction in statistical life expectancy in the Netherlands. [5]

1.1 Regulation

Legislative bodies recognized the imminent impact to the public health and has imple-
mented legal restrictions on the sulfur content of marine fuels. A reduction of 82 % was
achieved in the Netherlands since 1990. The maritime world followed later; the decrease
started as late as 2005. Transport modes other than shipping did not have a significant
share in the emission sulfur dioxide since 2005. The shipping sector contributed for 79 %
on the total reduction of SO2 since 2015, as shown in Figure 1.1. [6]
This reduction was achieved by the international maritime organization (IMO) through
the prohibition of the use of high sulfuric fuels in the North Sea. The area marked in
Figure 1.2 was designated as sulfur emission control area (SECA). The maximum allowed
value of the fuel sulfur content (FSC) is only 0.1 wt.% in this area. This limit is only in
force since 2015, as shown in Figure 1.3. In this figure is also shown that by 2020 the
allowed FSC will drop from 3.5 wt.% to 0.5 wt.% in non-SECA. [7]
However, fuels with a low FSC come at a price, since these fuels needs additional process-
ing to remove the sulfur. Kalli et al. calculated that ship transport expenses increased
with 50 % to 70 % within the North Sea. [8] Hence the incentive to not comply with this
legislation is great in economic sense.
To ensure a fair level playing field, the companies that do not comply need to be iden-
tified and punished. This will ensure maximum environmental gain from the legislation.



The regulation is part of MARPOL legislation in Annex VI. [9] In the Netherlands, it is
the task of the ‘Inspectie Leefomgeving en Transport’ (human environment and transport
inspectorate) (ILT) to enforce the legislation.

1.2 Monitoring

The most common solution to monitor compliance is to non-selective board ships while
they are at berth. A fuel sample is then collected and subsequently analyzed in the lab.
Legal actions will be taken if the FSC is more than 0.1 %(m/m). ILT uses handheld X-ray
fluorescence (XRF) apparatus to check the FSC. If the apparatus reports a FSC above
a certain threshold, the sample is sent to the lab for a more accurate analysis. The lab
quantifies the FSC using International Organization for Standardization (ISO) 8217:2017.
While this strategy will lower the amount of samples sent to the lab, there is still one
important drawback. Only a few ships can be inspected. Some of the ships are visited
because they were tagged by another country as possibly non-compliant. All other ships
were selected at random.
The ILT recognized the need of monitoring a large amount of ships to ensure a level play-
ing field. Inspection capacity is however limited. To make efficient use of the available
resources, ILT would like to operate risk-based. [11] They requested Netherlands organi-
zation for applied scientific research (TNO) to perform remote measurements of the FSC.
This allows them to determine compliance from much more ships than they could with
on-board inspection.
The remote monitoring can either be performed stationary or from a moving position.
The former uses the motion of the plume towards a fixed point along the coastline or
upon a bridge. The moving platform can either be on an aircraft, unmanned aerial vehicle
(UAV), helicopter or another ship. While expensive aircraft can sample much more ships
in a given time, it is preferred over using a ship to measure the FSC from another ship.
Aircraft can be used both unmanned and manned and rotary or fixed wing.
Earlier analysis of the measurements in this thesis showed compliance levels varying from
82 % to 99.4 %. [12] The range of these values is broad. It is clear that a uniform and
logical view needs to be developed on how to report the compliance levels.



Figure 1.1: The emission of SO2 by source over time. Data source: RIVM. [6]

Figure 1.2: SECA. Image courtesy of Dirk Jan Oostwoud Wijdenes and National Geo-
graphic [10].



Figure 1.3: The development of regulation restricting maximum marine FSC.

1.3 Aim

A lot of time was already invested in the development of analytical techniques for compli-
ance monitoring of sulfur dioxide. In many field campaigns these techniques were tested.
Yet, a thorough review of all different instruments used by various organizations and an
evaluation of all data produced by the campaigns is not available.
ILT has supported multiple initiatives in the development phase of remote sensing of ma-
rine FSC. An independent technology review is needed for future selection. Additionally,
this research allows ILT to know what they should demand in further monitoring con-
tracts.
Another major goal of the present research is the exploration of all measurements per-
formed by ILT and other port state controls (PSCs). A large comparison on this scale was
not performed earlier. The final aggregation of the campaigns and PSCs yield a total of
more than 8000 measurements. A question regarding this data is, for example, what good
decision criteria are, both for marking a ship non-compliant and for determining compli-
ance rates in the sector. The former marking is to take enforcement action and the latter
marking to calculate how much damage is caused by non-compliance ships, which could be
used in determining how much employees should be put on sulfur regulation enforcement.
Both classifications have their own assumptions and will result in different criteria.

1.4 Structure of this thesis

The review of all analytical instruments used to measure the data is given in Chapter 2. It
contains also an introduction about how the theory how it is possible to measure remotely
the sulfur contained within the bunker fuel. The third chapter will provide the methods
necessary to understand the statistical tools applied in the Results chapter. This chapter
will provide answers to questions like: how sure can we know that a ship is really non-
compliant and how can we determine how many ships sail on non-compliant fuel? We
will see that these questions are strongly related to classification problems, encountered
more often in statistics. In the Discussions the pros and cons are given of the applied
techniques. These considerations will lead to recommendations for further research. The
Conclusion and Appendixes complete this thesis.



Chapter 2

Theory

This chapter will start with the concepts of measuring the FSC remotely. During the
analysis of the data from the various (governmental) partners, it was clear that variation
among measurement campaigns exists and are driven by several factors. One of the factors
driving the variation among measurements was which operator conducted the measure-
ments. In order to understand the differences between the data sources, it is valuable
to explore which instruments are used in the sulfur compliance monitoring in Northern
Europe.
A complete overview of all operators is shown in Table 2.1. All campaigns mentioned
involved measuring ships where the emission could be resolved to a single ship. Most
methods gave no information about the estimated uncertainty at 0.1 wt.%. Some meth-
ods were not intended to be used within the SECA. Other methods were not used before
2015, when the 0.1 wt.% limit came into force. These methods did report a uncertainty at
other values for the FSC in some cases. However, it is difficult to convert a uncertainty
to another value for the FSC. For example: TNO reported a relative standard deviation
(RSD) of 21 % at 0.84 wt.% FSC. [13]. This cannot be converted to a RSD at 0.1 wt.%.
The following sections in this chapter will provide more information about how the instru-
ments work. The optical instruments deduced the concentration of various compounds
by looking how light that has traveled through the plume of a ship is modified. These
instruments did not have to be located in the plume. This is in contrast with sniffing and
sensing, where the apparatus had to be located in the plume. Tables were provided which
summarize which instruments are used by which operator and what properties they have.

2.1 Measuring the FSC

The FSC is literally a measure of how much sulfur (S) is present in the fuel tank, regardless
of the molecular structure. This can be determined by taking a fuel sample and analyze
it according to ISO 8217:2017 using XRF. But the content of sulfur in fuel can also be
measured remotely, by analyzing the plume. It is assumed that all sulfur in the fuel is
converted to sulfur dioxide. This assumption is valid if the plume is sufficiently aged. If
this is not the case, thus when a measurement of the plume is taken immediately after
emission, SO3, SO4 and H2SO4 can also be expected apart from SO2. Additionally Alföldy
et al. reported conversion within the tank to H2S. [14]
Furthermore 87 wt.% of the fuel corresponds to carbon, which is completely converted to



carbon dioxide. Using the correct molecular weights, equation 2.1 is obtained. [15]

FSC = 0.232 SO2
CO2

(2.1)

Equation 2.1 is not influenced by the size of the ship, because bigger ships will both emit
more sulfur dioxide and carbon dioxide. The ratio will remain also constant with higher
wind speeds, since both gasses will be diluted equally. As long as both gasses will behave
equally, the ratio applies. Since both molar masses are comparable, this will likely occur.
More problematic are background sources which can cause heightened carbon dioxide and
sulfur dioxide concentrations.

2.2 Optical instruments

The optical method is truly a remote method, since it is not necessary to position the
equipment itself in any part of the exhaust plume. Optical systems are fast because there
is no need to physically transport gasses through a system. However, soot in the plume can
not be filtered. This soot can cause interference with the sulfur reading. Additionally, the
optical method generally suffers more from uncertainties like wind and wave scattering.
This is the reason that Chalmers uses the optical method only as a selection for further
analysis with sniffing instruments.
There are three kinds of optical methods used in the remote determination of sulfur diox-
ide. Only DOAS and the UV-camera are actually in use since 2015. The other (LIDAR)
deemed to be too inaccurate for the determination of sulfur dioxide and is not routinely
used in northern Europe for IMO Annex VI compliance monitoring.
Note that calculating the FSC needs both the measurement of sulfur dioxide and car-
bon dioxide. The former can be measured by the optical methods, but none of the three
methods is capable of measuring the carbon dioxide. Differential optical absorption spec-
troscopy (DOAS) is able to measure the nitrogen dioxide which can be used as an indication
for the burned carbon dioxide. The other methods needs an estimation of or model for
the burned fuel.
It is difficult to compare the precision in the sulfur dioxide measurements between the
operators. But Prata reports typical emission values of 10 g s−1 to 100 g s−1, which results
in a typical RSD of 5 % to 50 %. [16] A typical RSD for the measurements by Chalmers
was 20 %. [17]
In the next three sections, the principles of the DOAS, ultra-violet (UV)-camera and light
detection and ranging (LIDAR) will be explained. An overview of the optical instruments
used by Bundesamt für Seeschifffahrt und Hydrographie (BSH)/ University of Bremen,
Chalmers and Norwegian institute for air research (NILU) is given in Table 2.2.



Table 2.1: Operators able to monitor the FSC of ships.

Operator Data Owner Period Area Technique N (ships) Platform Information Uncertainty
since 20151 @ 0.1 wt.% FSC

BSH University of Bremen 2013 - Hamburg Optical
> 1000 Fixed [15,18–21,21–25] 15 % to 30 %2

Sniffing

Chalmers
Danish EPA

2008 -
Scandinavia Optical

> 10000 Fixed [14,18,26–36] 50 %3MUMM USA Sniffing AirborneSweden Russia
DLR 2014 English Channel Sniffing 0 Airborne [37]

Explicit 2014 - Scandinavia Sensing Airborne [18,38] 13 %3
Sniffing

JRC 2009 - Italy Sensing Fixed [14,17,29]
Netherlands Sniffing

KINE Trafi 2016 - Finland Sniffing > 3000 Fixed [18]
Max Planck Institute 2011 Elbe Sniffing 0 Van [39,40]Johannes Gutenberg University 2012

Metropolia University 2010 - Helsinki Sniffing 0 Van [41]2011

NILU 2009 Rotterdam Optical 0 Fixed [16,29]Airborne

NOAA
2002

USA Sniffing 0 Airborne [42–46]2006
2010

University of California 2007 USA Sniffing 0 [47]

University of Washington 1994 USA Sniffing 0 Airborne [48,49]2000 Namibia
RIVM 2009 Rotterdam Optical 0 Van [14,29,50–52]
TNO ILT 2009 - Rotterdam Sniffing > 2000 Fixed [13,18,29,53]
1 Determined from measurements mentioned in publications. This number is thus a lower limit.
2 All uncertainties were added up with the root of sum of squares method.
3 Compared to a ship with a known FSC.



Table 2.2: Optical instrumentation used in the remote determination of the FSC of ships.

Operator BSH/ University of Bremen Chalmers NILU
Technique DOAS DOAS UV-camera

Spectrographs 2 Andor Shamrock SR-303i [54] Andor Shamrock SR-303i [54] Hamamatsu
Andor Newton DU290N [55]

Detector Princeton 1340/400-EMB CCD (UV)
Andor iDus DV420-BU (Visible)

Measurant SO2, NO2 SO2, NO2 SO2

t90 1 s < 10 ms
σ 20 ppb over 50 m 5 g s−1

LOD 10 ppb over 50 m 1 ppm over 10 m
QE 30 % at 300 nm
λ 294 nm to 324 nm (> 325 nm blocked) 200 nm to 600 nm ((308± 5) nm filter)
Range 5 km
Uncertainty 30 % to 45 %1

Remarks Needs active cooling Needs active cooling Limited accuracy
1 All uncertainties were added up with the root of sum of squares method.



Figure 2.1: The multi-axis (MAX)-DOAS set-up used by BSH/ University of Bremen.
Taken from [25].

Figure 2.2: The DOAS set-up used by Chalmers. Taken from [28].



2.2.1 DOAS

DOAS use the difference in light spectra. The intensity as function of wavelength with
and without the compounds of interest is measured. It is possible to use the sun as a light
source, since only the differences in two light paths are measured. It obviously enables the
measurement only at daylight. The molecule of interest will absorb partially the light in
some specific wavelengths. The analysis is complicated by other trace gases, Rayleigh, Mie
and Raman scattering and aerosol particles. These are corrected by measuring the spectra
of all expected trace gases beforehand and subtract all slow varying functions σi(λ). The
specie of interest can than be fitted in the residual spectrum. Using the Lambert-Beer-law,
the concentration can be calculated. A very clear explanation is found in reference [25].
Both BSH/ University of Bremen and Chalmers use the DOAS technique. The former uses
a fixed position in Wedel, Germany. They use MAX-DOAS, with a set-up schematically
shown in Figure 2.1. MAX-DOAS uses the difference between a light path traversing
through the ship plume and a zenith sky reference. In this way the interference from
sulfur dioxide and especially nitrogen dioxide in the upper atmosphere is prevented. [25]
Chalmers uses DOAS operated from a plane. It uses light reflected by waves, which
transected the plume two times, see Figure 2.2. The waves scatter the light in various
different directions, which cause an error term. [28]
Both BSH/ University of Bremen and Chalmers uses two spectrographs; one for measuring
nitrogen dioxide and one for measuring sulfur dioxide. When the ratio SO2/NO2 is higher
than 1, it is an indication that the ship is sailing with non-compliant fuel. Only Chalmers
use this information to measure a ship more thoroughly with other sensors, to determine
the FSC more accurately. [29]

2.2.2 UV-camera

The UV-camera combines the benefits of a spectrometer (with a high wavelength resolution
and range) and the benefits of a camera (high spatial resolution using various pixels). The
column density of sulfur dioxide can be calculated with an algorithm for each pixel and
finally a total emission rate can be calculated, as shown in Figure 2.3. The UV-camera
consumes less power than DOAS and LIDAR, since there is no active cooling needed. The
camera can also be much faster than the other techniques. The camera can capture easily
at 100 Hz. [16]
Prata (from the NILU) explored the technique but conclude that the technique can not
reliable quantify sulfur dioxide emissions, mostly due to the presence of soot. [16] Particles
in the plume are very efficient scatters, which makes it difficult to quantify accurate how
much light is absorbed. [30] It is unknown whether the technique is actually applied now.

2.2.3 LIDAR

The LIDAR has been explored by the Dutch Dutch institute for public health and the
environment (RIVM). It was operated from a truck. [51] The set-up consists of a laser beam
and a spectrometer. The laser beam shoots two light pulses with a different wavelength
(299.752 nm and 300.094 nm). From both pulses the reflection upon the molecules of
interest is measured and timed. By directing the laser beam sequentially, a full 3D resolved
sulfur dioxide emission pattern can be retrieved. A drawing of the set-up is shown in
Figure 2.4.



The pilot was stopped because it was not possible to measure accurate emissions on low
FSC and because only under the right wind, light and visibility conditions measurements
were possible. Measurements during rain were also not possible. [52] Additionally, it was
only possible to measure ships in proximity of land and not on full sea. Another drawback
is that large errors are introduced by the need to know an accurate vertical wind profile,
which can often not exactly be determined at the location of the ships plume that is being
measured. [29]

2.3 Sensing instruments

Both sensing and sniffing instruments need to be located within the plume. The former
are cheaper than the latter, because sensors make use of electronic resistance on a chip
instead of more complicated techniques. The power consumption and low weight makes the
sniffing instruments also more suitable for use in a unmanned aerial vehicles. However, the
sensing instruments are described sparsely in scientific literature. Probably this is because
the sniffing instruments are more accurate and precise.

2.3.1 Explicit

The company Explicit have patents pending on their technology. To the authors knowl-
edge, Explicit is the only one that operates the sensing instruments. Their patents do not
include detailed information about the instruments used. However, it is clear that several
sensors are placed in a chamber inside the UAV. Figure 2.5 was taken from a patent filled
by Knudsen. The air inlet can be shut by a relay, such that the chamber is a controlled,
steady state environment. The UAV will allow to remain for long time in the plume of
a ship, where the highest sulfur dioxide and carbon dioxide concentrations are present.
[56,57] These conditions probably allow Explicit to make use of sensing instruments while
having the same or better results than the sniffing instruments.



Figure 2.3: A photograph from the UV-camera with software for sulfur dioxide retrieval.
Taken from [16].

Figure 2.4: The set-up used for LIDAR by the RIVM. Taken from [51].



Figure 2.5: A UAV with sniffing instruments, used by Explicit. Taken from [57].

2.4 Sniffing instruments

Sniffing is the most used technique within the remote determination of the FSC. Common
sniffing instruments sample the plume with help of air pumps and subsequently analyze
it with techniques like fluorescence or infrared. It is possible to use filters to prevent soot
interfering with the analysis, which result in repeatable and more accurate measurements.
A major drawback of the sniffing instruments is that they need active pumping, which
needs space and power.
Calibration can be performed by standard addition or standard replacement. Both zero
air and background air can be used in these calibrations. Zero air can be produced in-situ
or can be bought from suppliers.
The sniffing instruments can be used on all kind of platforms, except those having very
limited space. The different platforms are shown in Table 2.1. For example, the ILT uses
a fixed station near a waterway shown in Figure 2.6.
There are different techniques needed for the different species. The following sections will
provide information about the measurements of sulfur dioxide, nitrogen oxides and carbon
dioxide.

2.4.1 Sulfur dioxide

Sulfur dioxide can be measured with fluorescence. The sulfur dioxide molecule is excited by
a laser pulse (λ = 254 nm), which decays from an excited state to a ground state within
a certain lifetime. By this decay a light pulse is emitted with a different wavelength
(λ = 330 nm) than the laser wavelength. The intensity of the light pulse is proportional
to the amount of SO2 molecules. However, VOCs and polycyclic aromatic hydrocarbons
(PAHs) can interfere with the analysis. A hydrocarbon kicker removes these molecules
by forced permeation through a tube wall. [58,59] An extensive manual about how the
analysis should be carried out, can be find in European standard 14212 - Ambient air
quality - Standard method for the measurement of the concentration of sulfur dioxide by
ultraviolet fluorescence (EN 14212).
However, there are different apparatus on the market and several operators have added
some own modifications. Some operators heat their tubes to prevent sticking of sulfur
dioxide molecules to metal surfaces. [18] Secondly, the hydrocarbon kicker can be removed
to increase sample flow, which decreases the limit of detection (LOD) and the response



Figure 2.6: Sniffing set-up used by ILT and operated by TNO, which is located by Rot-
terdam. Taken with permission from [38].

time. Orifices can be broadened to increase the sample flow, to decrease the LOD and
the response time. [14] A complete overview of all sniffing instrumentation is given in
Table 2.3.

2.4.2 Nitrogen oxide

Nitrogen oxides can cause environmental damage by contributing to acid rain and by
enhancing surface ozone formation. The latter affects greenhouse warming. [60] Unlike
sulfur dioxide, the concentration of nitrogen oxides is almost independent of the fuel
used. The production is dependent on the type of motor used and especially on the peak
temperatures of the combustion system. [61]
This makes nitrogen oxides interesting molecules to study. But the molecules interfere
also with the sulfur dioxide measurement, just like the VOCs and PAHs. Measuring
nitrogen oxides (NOx) allows to correct for the cross interference and hence the amount
of sulfur dioxide can be measured more accurately. BSH/ University of Bremen corrects
the SO2 levels for 0.8 % of the NO reading. The reading is obtained from the Airpointer/
Horiba APNA-370. BSH/ University of Bremen has certified the measurement according
to European standard 14211 - Ambient air quality - Standard method for the measurement
of the concentration of nitrogen dioxide and nitrogen monoxide by chemiluminescence (EN
14211). [15]
The Horiba APNA-370 uses chemiluminescence to measure all nitrogen oxides. All NO is
completely oxidized, whereby light (hv) is produced: NO + O3 −−→ NO2 + O2 + hν. This
light intensity is proportional to the amount NO converted. In order to measure NOx , all
NOx needs to be reduced to NO using platinum catalysts.



2.4.3 Carbon dioxide

There are two common techniques which can be used to measure the amount of carbon
dioxide in a plume, as can be seen in Table 2.4. Cavity ring-down spectroscopy (CRDS)
is used by Chalmers. It compromises a laser beam which is reflected multiple times in
a cavity. According to the manual, a light path of over 20 km can be made. The decay
constant τ is measured, which is inversely proportional to the concentration of carbon
dioxide. The advantage of measuring the decay instead of the intensity, is that it does
not suffer from differences in pulses. This result in much more stability and less need for
calibrations. Another advantage is the low standard deviation, which can be as low as
200 ppb.
Another technique is non-dispersive infrared (NDIR). It uses the absorption of carbon
dioxide in infrared light (λ = ±2 µm, 4 µm, 15 µm) by application of the Lambert-Beer
law. The main advantage of this technique is that it is possible to miniaturize this set-up
to 23 cm× 16 cm× 8 cm.

2.5 Concentration methods

When sampling from an airplane, the sample time can be short. A remarkable solution
to this problem is applied by the University of Washington. They used a Velostat grab-
bag which consisted of 2.5 m3 electrically conducting plastic, that could be filled in 12 s.
Another solution is using a stronger pump, used by national oceanic and atmospheric
administration (NOAA).



Table 2.3: Sniffing instrumentation used in the remote determination of sulfur dioxide emissions.

Operator Model Flow t90 σ LOD Pressure Uncertainty Corrected

BSH Airpointer/ 0.7 L min−1 < 2 min 1 % 0.25 ppb 0.8 % NOHoriba APSA-370 [62]
Chalmers Thermo 43i-TLE 551 (5 to 6) L min−1 2 s 5 ppb 1 ppb 80 hPa 21 %3 1.5 % NO

DLR Ion Trap MS 5 s 5 %
Metropolia Thermo 43C-TL [63] < 1 L min−1 80 s < 1 ppb < 2 ppb 1 ppb/1 %University

JRC Thermo 43C-TL [63]2 1.5 L min−1 15 s < 1 ppb < 2 ppb 1 ppb/1 %
KINE 40 s
NOAA Thermo 43s 0.35 mL L−1 10 %

University of Thermo 43s 0.35 mL L−1
California

University of Thermo 43s 0.2 mL L−1
Washington

TNO Teledyne-API 100E [58] 0.65 L min−1 < 100 s < 0.2 ppb 0.4 ppb 101 kPa
Max Planck Institute Airpointer [64] (4 to 20) s 0.25 ppb 0.5 ppb
1 The hydrocarbon kicker was removed.
2 The orifice was enlarged.
3 All uncertainties were added up with the root of sum of squares method.



Table 2.4: Sniffing instrumentation used in the remote determination of carbon dioxide emissions.

Operator Model Technique Flow t90 σ LOD Uncertainty Pressure

Chalmers Picaro G-2301M [65] CRDS 0.5 s < 100 ppb 200 ppb
LI-COR 7200 [66] NDIR (5 to 6) L min−1 1 s 200 ppb 200 ppb 7 %1 80 hPa

Max Planck Institute LICOR 840A [67] NDIR 1 L min−1 1 s 1 ppm

BSH/ University of Bremen Airpointer/ NDIR < 1 L min−1 1 s 200 ppbLICOR 840A[67]
DLR LICOR 6262 [68] NDIR < 10 L min−1 1 s 300 nL L−1 300 nL min−1 800 nL L−1 < 17 kPa

University of Washington LICOR 6262 [68] NDIR < 10 L min−1 1 s 300 nL L−1 300 nL min−1 800 nL L−1 < 17 kPa
KINE LICOR 820 [69] NDIR < 1 L min−1 1 s 200 ppb
JRC LI-COR 7200 [66] NDIR 6 L min−1 1 s 70 ppb 200 ppb < 200 kPa
TNO LI-COR 7200 [66] NDIR 6 L min−1 1 s 70 ppb 200 ppb < 200 kPa

NOAA LI-COR 7200 [66] NDIR 6 L min−1 1 s 70 ppb 200 ppb < 200 kPa
Metropolia University Horiba VA 3100 3 % 2 ppm

1 All uncertainties were added up with the root of sum of squares method.



Chapter 3

Method

This chapter will explain the various statistics and software used in this research. It
will provide the mathematical framework, which is subsequently used in the Results and
Discussion. In section 3.2 an explanation is given of how classification can be performed
with the use of the z-score. In the context of this z-score, type I and type II errors
are explained and how these depend on each other. In order to perform power analysis,
validation data is needed. A short elaboration on how this data can be obtained is given
in Section 3.3. Finally, the expectation-maximization algorithm is explained, which allows
to perform some power analysis without the need for training data. All the concepts
explained in this chapter, are necessary to understand the results.

3.1 Software and data management

Partners of ILT were requested to share their data for research purposes. The data was
provided in comma separated value (CSV) or Excel format. In SAS Software all data was
aggregated. SAS Software [70] was chosen because this was the only relevant software pack-
age provided from ILT. A master table was created were each row was one measurement
and all its columns were parameters. The data was made anonymous to allow working
outside the company network with R [71]. An overview of the variety of parameters and
observations can be found in Appendix 1.

3.2 Classification

3.2.1 Z-score

The normal distribution is a simple model for classification. In this model, each data
point has its own normal distribution. This distribution is defined by the reported FSC
and the standard deviation. It is a simple model but likely not suitable, since it has
several assumptions. The model was however used to gain further understanding in the
classification problem. In order to perform classification, two hypothesis were defined:

H0 : The ship has a FSC of 0.1 wt.% or less
H1 : The ship has a higher FSC than 0.1 wt.%

(3.1)
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Figure 3.1: An example of a probability distribution of a measurement. The fraction
which is filled under the curve is equal to the probability of obtaining this data or more
extreme, given that H0 is true.

The FSC is the value which was obtained in the case the measurement had no bias and
if one could observed it infinity times. If both the x̄ and sx was known (where x is the
measured FSC), a Z-score could be calculated, according to Equation 3.2. This equation
was equal to the z-score in the case of n = 1. By using the t-test, it is assumed that x
follows a normal distribution. This was certainly not the case, as multiple measurements
would then have a significant probability of having negative FSC. This could not be the
case, since a negative concentration of sulfur dioxide or carbon dioxide is impossible.
See Figure 5.4 for a measurement with significant probability of having a negative FSC.
However, by absence of other methods for classification, the t-test was used.

z = x̄− µ0
sx/
√
n

(3.2)

From the z-score, a probability can be calculated. The p-value is the probability that if
H0 is true, one will observe this data or more extreme. More extreme implies that the x̄
would be more far off from µ0 = 0.1 and thus would be higher. If this p-value is sufficiently
low (below α), H0 should be rejected and thus H1 is accepted. A measurement which was
likely from a non-compliant ship is shown in Figure 3.1. It had only very little probability
that this data (or more extreme) was obtained, given that H0 is true.
It was assumed that the measurement had a normal probability density function with a
given µ = x̄ and σ = sx. The probability of being compliant is then given by the fraction
of the function with FSC < 0.1.

3.2.2 Type I and II errors

The probability of rejecting H0 while H0 is true, also called the type I error, is equal to α.
The other error, type II or β, is the probability that falsely H0 is accepted (or better; not
rejected) while H1 is true. There is a trade-off between these errors; a lower threshold α



will result in a larger β. β is also depended on the effect size (d = µ1−µ0
σ ) which says how

different the populations of all measurements given H0 and H1 are. β can be calculated
using equation 3.3.

β = p(X = xcrit) from X ∼ N
(
µnc, σ

2
nc

)
where µnc and σnc are true mean and standard deviation
from the population of FSC of non-compliant ships.

(3.3)

The positive classification rates are called specifity (1 − α) and power (1 − β). The
accuracy is the fraction of all data which is correctly classified. It can be calculated using
equation 3.4.

accuracy = nc (1− α) + nnc (1− β)
nc + nnc

where nc is the amount of compliant classified observations
and nnc is the amount of non-compliant classified observations

(3.4)

3.2.3 Critical value

A critical z-value can be calculated, which is the boundary between the two classes. Values
zcalculated > zcritical will be rejected as compliant, whereas all other values will not have
sufficient prove to be rejected as compliant. The formula for the critical z-value is given
in equation 3.5. The critical z-value is 1.645 for a one-tailed test with α = 0.05.

zcritical = Φ−1(1− α) where Φ−1 is the inverse standard normal distribution (3.5)

Combining equations 3.3 and 3.5 gives the relation between β and α, which is given in
equation 3.6. The effect on varying α and β is depended on the µnc and σnc.

β = p
(
X = Φ−1(1− α)

)
where Φ−1 is the inverse of N (µnc, σnc) . (3.6)

3.3 Validation data

The objective is to differentiate between an observation from a ship sailing under compliant
and non-compliant fuel. Training data should be data from which we know for sure to
which group it belongs. In this case this data was obtained by ILT. The samples were
taken from marine fuel, which were subsequently analyzed by either XRF or lab analysis.
The allowed relative standard deviation of the laboratory used by ILT was only 5 %.1 The
cross reference was defined as a measurement on the same ship within two days.

3.4 Expectation-maximization algorithm

In order to be able to estimate the distributions of the FSC of the compliant and non-
compliant ships, without the need of validated data, unsupervised learning was used. In
the first stage, a model consisting of two normal distributions was used. It was assumed

1According to personal conversation with Jan-Willem Bil, inspector sampling team (ILT)



that the distribution separation explains the separation between the compliant and non-
compliant ships. A more advanced assumption is a lognormal distribution. It was used
because there are a lot of non-compliant ships just over the legal limit, which caused a
long tail on the data. The lognormal could fit this tail.
A more thorough derivation is given in Appendix B.

3.4.1 Unimodal distributions

Maximum likelihood estimators (MLEs) for unimodal distributions are found by finding
the parameters which maximize the (log-)likelihood. For a normal distribution (N

(
µ, σ2)),

the likelihood is given in equation 3.7 for the data x. It is well known that maximizing this
likelihood with respect to µ and σ, gives µ̂ = x̄ ≡ 1

n

∑n
i=1 xi and σ̂2 = 1

n (x− x̄)T (x− x̄).

p
(
X|µ, σ2

)
=

N∏
i=1

[
1√

2πσ2
exp

(
−(xi − µ)2

2σ2

)]
(3.7)

3.4.2 Bimodal normal distribution

In order to model both classes with a normal distribution, a bimodal model was created.
This model has five parameters (µ1, σ1, µ2, σ2 and π). These parameters will provide
information about what fraction is non-compliant and the variation between compliant
and non-compliant groups. An example is given in Figure 3.2.
The log-likelihood of a bimodal normal distribution is given in Equation 3.8. Here π
({π1, π2}) are the prior probabilities to belong to either class 1 or 2 (πk = p (x ∈ Ck)) and
thus ∑2

k=1 πk = 1. Taking the derivative of the parameters is difficult. This will result
in µ̂1 depending on µ̂2 and vice versa. The same is true for σ1 and σ2. This problem
can be solved by creating responsibilities. This responsibility is the posterior probability
(expectation value) of a point belonging to class k given the observation of the data. The
probability is calculated using Bayes’ theorem for each point and class, see equation 3.9.
In the E-step, each point is softly assigned using the responsibilities. Then the likelihood
is calculated for each class and point separately, see equation 3.10.
In the M-step, MLEs are calculated for each parameters. There is no problem anymore in
calculating these, since there is only one term in the logarithm in equation 3.10. The MLEs
are given in equation 3.11. With the updated parameters, the E-step can be performed
again to calculate the updated responsibilities. These E- and M-steps should be iterated
until convergence.

log p
(
X|π,µ,σ2

)
=

N∑
i=1

log
[ 2∑
k=1

πk N
(
xi|µk, σ2

k

)]
(3.8)

γi,k ≡ p(xi ∈ Ck|x)

ˆγi,k =

prior︷︸︸︷
πk

likelihood ratio︷ ︸︸ ︷
N
(
xi|µ̂k, σ̂k2

)
π1 N

(
xi|µ̂1, σ̂1

2
)

+ π2 N
(
xi|µ̂2, σ̂2

2
)

︸ ︷︷ ︸
evidence

(3.9)



log p
(
X|Γ,µ,σ2

)
=

N∑
i=1

2∑
k=1

γi,k log
[
N
(
xi|µk, σ2

k

)]
(3.10)

µ̂1 =
∑N
i=1 γi,1 xi∑N
i=1 γi,1

µ̂2 =
∑N
i=1 γi,2 xi∑N
i=1 γi,2

σ̂1
2 =

∑N
i=1 γi,1 (xi − µ̂1)∑N

i=1 γi,1

σ̂2
2 =

∑N
i=1 γi,2 (xi − µ̂2)∑N

i=1 γi,2

π̂k =
∑N
i=1 ˆγi,k
N

(3.11)

3.4.3 Bimodal distribution; normal and lognormal mode

The expectation-maximization (EM)-algorithm can be extended to a distribution with one
normal mode and one lognormal mode. The lognormal mode was used because there was
a right tail present just above the 0.1 wt.%. Other distributions could have been chosen.
However, a lognormal mode allowed the incorporation in the EM-algorithm. Additionally,
it provide a lower bound. This is logical for the ships sailing on non-compliant fuel.
The likelihood function of such a distribution is given in Equation 3.12. Using this likeli-
hood, the responsibilities and MLEs can be calculated again. In contrast to a normal dis-
tribution with support x ∈ (−∞,∞), the support of a lognormal distribution is x ∈ (0,∞).
This means that either xi ≤ 0 should not occur for all i or the responsibility γi,2 should
be 0 for each i where xi ≤ 0.

log p
(
X|Γ,µ,σ2

)
=

N∑
i=1

{
γi,1 logN

(
xi|µ1, σ

2
1

)
+ γi,2 log Lognormal

(
xi|µ2, σ

2
2

)}
(3.12)

3.4.4 Bimodal distribution; normal and shifted lognormal mode

Data from non-compliant ships (xi ∈ C2) have FSC > 0.1. The lognormal mode was
shifted with 0.1, such that the support is x ∈ (0.1,∞). An example of such a model is
shown in Figure 3.3. The figure is much like Figure 3.2, but the non-compliant group is
now modeled with a shifted log-normal mode.
The likelihood of the bimodal distribution is given in Equation 3.13. The responsibilities
derived from the likelihood and the MLEs are given in Equation 3.14 and 3.15 respectively.

log p
(
X|Γ,µ,σ2

)
=

N∑
i=1

{
γi,1 log

[
N
(
xi|µ1, σ

2
1

)]
+ γi,2 log

[
Lognormal

(
xi − 0.1|µ2, σ

2
2

)]}
(3.13) ˆγi,1 = π1 N(xi|µ̂1,σ̂1

2)
π1 N(xi|µ̂1,σ̂1

2)+π2 Lognormal(xi−0.1|µ̂2,σ̂2
2) for xi > 0.1

ˆγi,1 = 1 for xi ≤ 0.1 ˆγi,2 = π2 Lognormal(xi−0.1|µ̂2,σ̂2
2)

π1 N(xi|µ̂1,σ̂1
2)+π2 Lognormal(xi−0.1|µ̂2,σ̂2

2) for xi > 0.1

ˆγi,2 = 0 for xi ≤ 0.1

(3.14)

µ̂1 =
∑N
i=1 γi,1 xi∑N
i=1 γi,1

µ̂2 =
∑N
i=1 γi,2 log (xi − 0.1)∑N

i=1 γi,2

σ̂1
2 =

∑N
i=1 γi,1 (xi − µ̂1)∑N

i=1 γi,1

σ̂2
2 =

∑N
i=1 γi,2 [log (xi − 0.1)− µ̂2]∑N

i=1 γi,2

π̂k =
∑N
i=1 ˆγi,k
N

(3.15)
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Figure 3.2: An example of a bimodal normal distribution. The two distributions (green
and red line) can model the two classes of data, while the total distribution (dotted line)
should fit the grey data. Data source: TNO
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Figure 3.3: An example of a bimodal normal - shifted log-normal distribution. The two
distributions (green and red line) can model the two classes of data, while the total dis-
tribution (dotted line) should fit the grey data. Data source: TNO



Chapter 4

Results

This chapter will provide the results obtained during this research by using the measure-
ments from (partners of) ILT. This chapter will give information on how compliance rates
can be determined and to what probability we can know that a ship is compliant given a
certain measurement. Increasingly complex models will be used, in order to get a better
understanding. The simplest model is the linear classification boundary. A bit more com-
plex model is using the z-score in Section 4.3. The last section contains the most complex
method which is the modeling of the two groups using an EM algorithm.

4.1 Measurements

In total 8049 measurements from at least 3197 ships were analyzed. The histogram of
the fuel sulfur content is given in Figure 4.1. Note that the measurements originate from
different apparatus and operators, as shown in Attachment A. In this paper, the label
given by TNO was used as a reference. TNO used criteria including requirements about a
minimum quality of the measurement in terms of ppb SO2 and CO2. TNO reported 9 %
non-compliance, see Figure 4.2.
A problem is that some operators excluded outliers without further specifying criteria.
Denmark reported more than half of the time a negative FSC, which is physically im-
possible. It was possible that also other operators excluded these measurements without
reporting it either compliant or non-compliant. This would affect the compliance determi-
nation of all ships, as it is more likely that compliant ships would result in negative FSC
measurement.
Another problem was that some reported FSC values could not be reproduced by the
corresponding sulfur dioxide and carbon dioxide measurements. See Appendix F.

4.2 Linear decision boundary

A linear decision boundary is the most straightforward way to assign measurements either
compliant or not. A certain value is chosen to be the decision boundary. All measurements
below this boundary would be assigned to the compliant class and all points above will be
assigned as non-compliant. A logical choice of the decision boundary would be 0.1 wt.%,
since this is the legal limit where the hypotheses in Section 3.2.1 are based on. This would



result in 22 % non-compliance. In Figure 4.1 a histogram with all measurements is shown.
The solid black line is the cumulative counts which can be used to easily obtain the results
of a linear decision boundary.
The best way to evaluate whether the decision boundary is chosen correctly, is by com-
paring it with a validation set. When the decision boundary is set to 0.1 wt.% for both
the remote measurements and laboratory results, an accuracy of 16

30 = 53 % was found.

4.3 Z-score

The z-score is determined using the FSC and the standard deviation in that value. A
common value chosen for α is 5 %. A histogram of all z-scores, the associated p-values and
the effect of choosing this α is shown in Figure 4.3. Using α = 5%, the confusion matrix
shown in Table 4.2 was calculated. The accuracy was 68 %. The relation between α,
p-value, ¯xFSC and sFSC is shown in Figure 4.4. In this figure, the blue line is the decision
boundary based upon the z-score and α = 5%. The color and shape denotes the validated
result, while the background color gives the probability obtained from the z-score at every
spot. For example, TNO measured the most right point. A FSC of (0.53± 0.11) wt.% was
measured. The marine fuel was labeled non-compliant, as one would expect with a high
probability of having a FSC of more than 0.1 wt.%. However, the on-board inspection
yielded a FSC of 0.068 wt.%, which is obviously compliant.
An equivalent figure was created for the complete database in Figure 4.5, where only 5 %
is non-compliant. This time the color denotes the label given by TNO. For example, the
point red triangle just above the label α = 0.05 is a measurement which was reported
non-compliant by TNO, had a p-value of 0.06 and thus was compliant using the z-score
(since p-value > α).

Classification
Compliant Non-compliant Total

True value Compliant 7 6 13
Non-compliant 4 2 6

Total 11 8 19

Table 4.1: Confusion matrix for linear decision boundary at 0.10 wt.% for the remote
measurements.
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Figure 4.1: Histogram of FSC values. The black solid line is the cumulative count.
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Figure 4.2: Box plot of compliance as determined by TNO. There were non-compliant
measurements above the 0.5 wt.%. Data source: TNO

Classification
Compliant Non-compliant Total

True value Compliant 11 2 13
Non-compliant 4 2 6

Total 15 4 19

Table 4.2: Confusion matrix for classification using the z-score.
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Figure 4.3: Classification using α = 0.05. (Top) Histogram of all z-value. (Bottom)
Histogram of the p-values, calculated from the z-score. This is the probability that that
data point was obtained (or more extreme) given H0

Figure 4.4: Cross-validation of measurements from Explicit and TNO with inspection
results from ILT. The blue line gives the decision limit. The background color gives the
probability of obtaining the data or more extreme given that a point is compliant. The
shape of the point and the color gives what the value of the inspection results, where a
triangle is below 0.1 wt.%, while a circle is below that value. The x- and y-axis denote the
remote determination of the FSC and the associated standard error.
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4.4 EM algorithm

4.4.1 Bimodal normal distribution

In order to have an estimation of the errors encountered in the FSC values present, data
modeling was applied. A bimodal distribution was used for the modeling, since there
are two classes present in the data. At first, two normal modes were fitted. The initial
parameters were used from the classification performed by TNO. They were used to plot
Figure 3.2. The EM-algorithm did converge; in Figure C.1 the parameters are shown. The
result is shown in Figure 4.6.

4.4.2 Bimodal distribution; normal and log-normal mode

In the TNO database, shown in Figure 4.7, it is clear that the non-compliant group (in red)
is more log-normally distributed, since it has a longer tail. Therefor, the EM-algorithm was
adjusted to accommodate a normal and a log-normal mode. The latter mode was shifted
with 0.1 wt.%, to have support (0.1,∞). Using an EM-algorithm, a non-compliance rate
of only 3 % was found as can be seen in Figure 4.8.
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Figure 4.8: Bimodal distribution fitted to all data. The first mode is
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Chapter 5

Discussion

This chapter will discuss the pros and cons of the applied techniques. It will start with
evaluation on (the lack of) validation data. This notion will especially come back in the
discussion of the results in the next two sections: Linear boundary classification and Z-
score. The EM-algorithm offers an alternative approach to deal with the problem of lacking
validation. The end of this chapter will provide discussion about how the measurements
were performed.

5.1 Validation data

5.1.1 Validation against on-board inspection

Knowledge about the measurements, and the reliability of it, can be improved by expand-
ing the validation set. Only 19 measurements with cross references of inspection data were
available during this thesis. These 19 measurements are given in Appendix E. Figure 5.1
shows that in only 8

293 = 2.7 % a ship was boarded when TNO sent the ILT an e-mail that
a ship was non-compliant.1 Most surprisingly is that only 1 out of 8 of these measurements
was actually from an non-compliant ship.
One way too increase the number of measurements for the validation set is by sampling
much faster. In the current system, after an alert from TNO it can take several weeks
before the ship is boarded. Some delay might come because the ship is leaving the harbor,
making it impossible to board the ship. But in many occasions the ship was however
measured within two weeks, see Figure 5.2. This suggest that by coincidence the ship was
measured and not because it was planned.

1These number was calculated using the data from ILT and TNO. Whether actually an e-mail was sent
is unknown since TNO revoke or changed some measurements afterward. Another important remark is
that the label was given originally by TNO. However it was not available for all measurements, so in this
comparison a linear decision boundary at 0.12 wt.% was used. Additionally a match could only be made
when both times an IMO number was reported, which was in about 91 % the case.



Figure 5.1: Left: The total number of measurements performed by TNO in 2016 and
2017, divided in the results of the measurements. Right: Zoom-in on the non-compliant
measurements from TNO compared with the results of on-board inspection. Data from
ILT and TNO.
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Figure 5.2: A histogram of the days ILT boarded the ship after a measurement from TNO.
Data obtained from TNO and ILT.



5.1.2 Validation by cross comparison remote sensing

The amount of cross comparisons can also be increased by performing measurements with
multiple instruments. The main advantage is the possibility to measure ten to twenty
ships per hour in this way. The maximum amount of ships possible to measure with on-
board inspection is two or three per day per person. The drawback of this approach is the
difficulty to assess the bias and precision, since remote sensing has a low precision and high
bias compared to an on-board inspection. A new campaign involving cross measurements is
useful, but attention should be paid on how results should be interpret. Especially because
the accuracy of the cross reference by remote sensing is much lower than a cross reference
obtained by an on-board inspection. There is thus a trade-off for cross measurements
between the amount of ships measured and the quality of these measurements.
An earlier approach concerning the comparison of multiple measurements by different
techniques on individual ships was performed by Lööv et al. [29] This campaign was
performed in 2009, when the maximum allowed FSC was 1.5 wt.%.

5.1.3 Validation against other information sources

It is useful to add data from other sources in future campaigns. All ships (above 5000 GT)
have to report their carbon dioxide emissions. [72] These values can be useful to compare
with the remote sensing measurements. Some ships are equipped with real time emission
registration. If these ships will cooperate, this will allow both a high amount of ships
measured and high quality of these measurements. Cooperation can be expected from
ships involved in, for example, the Trident alliance. [73]

5.2 Type I and type II errors

The α should be chosen in such a way that it makes sense. This is the first problem,
because what is a good value for α? An answer to this can only be given when the
relation between α and β is known, so that the trade-off between type I and type II error
can be chosen rationally. Three situations can be thought of:

• The α should be sufficient low if the remote measurement should be used in court.
There is a strong preference not to prosecute ships that by nature of uncertainty are
assumed non-compliant but are actually not. This is more important than improving
the probability that a ship sailing with non-compliant fuel is caught.

• To get a best estimate of population behavior, α and β should be similar. There
should be a balance between wrongly classified compliant and non-compliant ships.

• The sniffer is used as a screening method for PSC. A sufficient low β should be chosen
in order to get all ships sailing with non-compliant marine fuel. More inspections are
accepted as this will lower the probability that a non-compliant ship is not inspected.
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Figure 5.3: A histogram of all measurements performed by on-board inspection by ILT.

5.3 Linear boundary classification

The best linear boundary classification could be performed with the use of much validated
data. Since, the data was only very limited available, it was not possible to train the
model. Therefore, the data could only be used to calculate how well the classification took
place.
Another problem is imposed by a low accuracy of the data. A quick look on the histogram

on all data, Figure 4.1 on page 26, shows that there are much measurements with a FSC
lower than 0.06 wt.%. If this was true, it is quite surprisingly, since sailing on such low
sulfur fuel is much more expensive than sailing on 0.1 wt.%. A histogram with only mea-
surements performed by an on-board inspection is shown in figure 5.3. The median of this
distribution is 0.09 wt.%, which is higher than the median from all remote measurements
(0.055 wt.%). Hence, lowering the bias and improving precision are important subjects for
further research in the improvement of the analytical techniques.
With low precision it is impossible to separate to the compliant or non-compliant class
only on the value of the FSC. A linear boundary classification would suffice if the precision
would be low. Since this is not the case, a more complex model is used. In this complex
model, added parameters like the reading for SO2 and CO2 could be added, together with
there standard deviation.

5.4 Z-score

The z-score uses the information given by the standard deviation. The main assumption in
this approach is that there is a normal (and thus symmetric) distributed error. However,
the reported relative standard deviation was many times above the 100 %, see for an
example Figure 5.4. Here the black area is proportional to the probability of having a
negative FSC, which is not possible. Hence a symmetric probability distribution is very
unlikely. Further investigation how the error should properly reported is inevitable for



calculating the probability that a ship is sailing with non-compliant fuel. An order of
magnitude of this errors can be found by looking to a ship which runs likely always on
the same quality fuel. This is true for the ship in Figure 5.5. The blue line is the linear
regression line. Note the large variation which can be caused by a low precision. The
measurement is stable over the six months.

5.5 EM

The lack of validation data stimulates the generation of a model which can simulate the
variances without the need of validation data. These results can then be used in the
power analysis. The best fit for the data gave a likelihood of only 3 %. This value is low
compared to high quality in-port measurements, especially because measurements tends
to have higher non-compliance levels at sea. All other methods gave much higher non-
compliance rates. A reason why the non-compliance group might be under represented
might be found in the very broad normal mode. Independent of initial parameters (within
reasonable limits), the normal mode ended up being very broad. Maybe the measurements
between 0 wt.% to 0.05 wt.% are indicative of the measurements where the conversion of
SO3 and SO4 to SO2 was not complete, as mentioned in Section 2.1. Or maybe these low
reading was caused by washing out because of rain. Both will cause an underestimation
of the SO2 causing a lower apparent FSC than really is the case.

5.6 Analytical instruments

Precision can be improved with better instruments, but this can be limited by both costs
and availability. Another strategy is by performing multiple (possibly independent) mea-
surements. This can either be done by using a set-up in duplo (done by Explicit) or by
applying two different techniques. A third possibility is to increase integration time. A
helicopter or an UAV can stay easily one minute in a plume, whereas the airplane has at
most a few seconds.
The precision can also be improved by measuring higher concentrations. In this thesis
access to the raw data was merely available, but it is easy to understand that the con-
centrations of SO2 and CO2 are much higher just above the chimney. Optical methods
measuring from several hundreds of meters suffer not only from much lower concentrations
but also from much higher signal-to-noise ratios (SNRs). Especially the CO2 background
concentration can be heightened by other pollution sources, especially near the ports where
the ground stations are often situated.
Another obvious problem by measurements performed at fixed stations is the possibility
that shippers will avoid these spots. Or it is possible that ships shift to compliant fuel
just before entering the areas which are controlled by fixed stations, since most ships are
equipped with multiple fuel storage facilities.



Figure 5.4: Some measurements had significant probability having a negative FSC if nor-
mality is assumed. Data source: TNO
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Figure 5.5: All measurements from the ship encountered the most times in the database.
The ship was operating on a fixed route and likely used always the same fuel. Data from
ILT and TNO.



Chapter 6

Conclusion

Data and measurement validation are of utmost importance when understanding the qual-
ity of remote sensing. Especially because the relative error in measurements can reach up
to 100 %, classification of ships into compliant or non-compliant groups is difficult. An-
other struggle is the lack of validation through cross-reference measurements.
From an analytical perspective, this lack of validation makes it difficult to compare the
different operators. Reported uncertainties are much too low to describe the difference
between the few cross-reference measurements which were available. It is likely that a
significant bias is present, both in the carbon dioxide measurements through varying back-
ground and in the sulfur dioxide measurements through washing out or other processes
which remove sulfur.

6.1 Outlook

Future use of FSC measurements could be improved by measuring on full sea. This will
prevent ships to avoid control and on full sea there are no other carbon dioxide emitters
in the direct neighborhood. Another improvement would be the application of longer
integration times or multiple measurements at the same time. This can lower the random
error in the measurements and subsequently yield better results on determining whether
the ship is compliant.
The data analysis after a campaign using such instruments will benefit from the lower
uncertainties. But even better is to think a priori how many measurements should be
made and which level of confidence are acceptable. The amount of measurements depend
on the (expected) instrumental accuracy and which question needs to be answered.
A full Bayesian approach can result in a p (ship ∈ Cnon-compliant|D). Machine learning can
possibly provide good priors given their AIS data and history to select ships which should
be measured. In this way a double risk-driven inspection could be performed.
More research could probably lead to a future wherein non-compliant ships are directly
fined after a measurement, with a fine depending on the sulfur content of the fuel. It
can be just like speeding on the highway will result in a fine by a speed camera, with
a fine depending on your speed. Who knows, maybe it is in the future possible to use
satellite measurements to measure the FSC. In the analogy of the speed camera on the
highway, this is like section control. Ships are regulated in that case over their complete
journey. The fine could then depend on the climate and health effects imposed through



the higher FSC. It would be a perfect implementation of the principle of environmental
law ‘the polluter pays’.
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[39] F. Drewnick, T. Böttger, S. L. Von Der Weiden-Reinmüller, S. R. Zorn, T. Klimach,
J. Schneider, and S. Borrmann, “Design of a mobile aerosol research laboratory and
data processing tools for effective stationary and mobile field measurements,” Atmo-
spheric Measurement Techniques, vol. 5, no. 6, pp. 1443–1457, 2012.

[40] J. M. Diesch, F. Drewnick, T. Klimach, and S. Borrmann, “Investigation of gaseous
and particulate emissions from various marine vessel types measured on the banks of
the Elbe in Northern Germany,” Atmospheric Chemistry and Physics, vol. 13, no. 7,
pp. 3603–3618, 2013.

[41] L. Pirjola, A. Pajunoja, J. Walden, J.-P. Jalkanen, T. Rönkkö, A. Kousa, and
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Appendix A

Parameters in database

The following table shows all parameters which are included in the database containing all
measurements. For each agency (columns) the fraction of non-empty cells per parameters
is shown. An italic 1 denotes that all entries in the database were provided with the
corresponding parameter. At the last row, the absolute amount of entries for each agency
is shown. The table was rendered using Pandoc in R.[71]



BSH ILT TNO MUMM Explicit
DFDS-
Maersk Denmark Average

Date 1 1 1 1 1 1 1 1
FSC 1 1 1 0.85 1 1 1 0.97

Instrument 0 1 0 0 0 0 0 0.09
Time 1 0 1 1 1 0.6 1 0.91

Longitude 0 0 0 0.98 1 0 1 0.25
Latitude 0 0 0 0.98 1 0 1 0.25
Length 1 0 0 0.99 1 0 1 0.7
Width 1 0 0 0.99 1 0 1 0.7

Destination 0.97 0 0.97 0.94 0.85 0 1 0.87
Speed 1 0 1 0.98 1 0 1 0.9
Course 1 0 1 0.98 0.94 0 1 0.9

Sign 1 0 0 0 0 0 0 0.44
FSC_SD 1 0 1 0 1 0 0 0.69

SO2 1 0 1 0 0 0 0 0.65
CO2 1 0 1 0 0 0 0 0.65
NO 1 0 1 0 0 0 0 0.65

NOx 1 0 0 0 0 0 0 0.44
O3 0.94 0 0 0 0 0 0 0.42

NO2 1 0 1 0 0 0 0 0.65
Plumetime 0.66 0 1 0 0 0 0 0.5
Airpressure 1 0 0 0 0 0 0 0.44

SO2_SD 1 0 0.97 0 0 0 0 0.64
Dewpoint 1 0 0 0 0 0 0 0.44
CO2_SD 1 0 0.97 0 0 0 0 0.64
NO_SD 1 0 0 0 0 0 0 0.44

NO2_SD 1 0 0 0 0 0 0 0.44
NOx_SD 1 0 0 0 0 0 0 0.44
O3_SD 0.94 0 0 0 0 0 0 0.42

Windgust 1 0 0 0 0 0 0 0.44
Temperature_housing 1 0 0 0 0 0 0 0.44

Precipitationtype 1 0 0 0 0 0 0 0.44
Rainintensity 1 0 0 0 0 0 0 0.44

Humidity 1 0 1 0 0 0 0 0.65
Temperature 1 0 1 0 0 0 0 0.65

Winddirection 1 0 1 0 0 0 0 0.65
Windspeed 1 0 1 0 0 0 0 0.65
Windchill 1 0 0 0 0 0 0 0.44
Comment 1 0 0 0 0.07 0 0 0.44
Platform 0 0 0 0 0 0 1 0.04

FSC_RSD 1 0 1 0 0.99 0 0 0.69
Distance 0 0 1 0 0 0 0 0.21
Pressure 0 0 1 0 0 0 0 0.21
Draught 0 0 1 0 0 0 0 0.21

Movement 0 0 0 0 1 0 0 0.04
Heading 0 0 0 0 0.99 0 0 0.04

NOx_Power 0 0 0 0 1 0 0 0.04
NOx_Power_SD 0 0 0 0 1 0 0 0.04

Compliant 0 0 1 0 0 0 0 0.21
Quality 0 0 0 0 0 0 1 0.04

Flag 0 0.1 1 0.97 1 0 0.99 0.47
Flag_long 0 0.1 1 0.97 1 0 0.99 0.47
Flag_short 0 0.1 1 0.97 1 0 0.99 0.47

Status 0.01 0 0 0 0 0 0 0.01
Status_string 0.01 0 0 0 0 0 0 0.01

Type 0.97 0.21 0.98 0.94 1 0 0.99 0.9
Type_string 0.97 0.21 0.98 0.94 1 0 0.99 0.9

ID 0.78 0.96 0.88 0.99 0.99 1 0.96 0.87
H2OBaseline 0 0 1 0 0 0 0 0.21
CO2Baseline 0 0 1 0 0 0 0 0.21

Manual 1 0 1 0 0 0 0 0.65
Total entries 3564 743 1661 1390 327 10 354 8049
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Appendix B

MLE of bimodal distribution

A complete derivation is given from the MLEs of the bimodal distribution with a normal
and a shifted lognormal mode, which is explained in section 3.4. The likelihood function
from the model is:p (x|a, b, µ1, µ2, σ1, σ2) = ∏N

i=1

(
ai N (xi|µ1, σ1) + bi Lognormal(xi − 0.1|µ2, σ2)

)
ai + bi = 1 for every 1

(B.1)
The maximum likelihood estimator of µ1 can be find using:

∂p (x|a, b, µ1, µ2, σ1, σ2)
∂µ1

= 0 (B.2)

Solving this equation is difficult because of the product in the likelihood. In order to get rid
of this product, we can calculate the derivative of the log-likelihood because maximizing
a likelihood is equivalent to maximizing a log-likelihood. The log-likelihood is given by:

log p (x|a, b,µ,σ)

= log
N∏
i=1

(
ai N (xi|µ1, σ1) + bi Lognormal(xi − 0.1|µ2, σ2)

)

=
N∑
i=1

log
(
ai N (xi|µ1, σ1) + bi Lognormal(xi − 0.1|µ2, σ2)

) (B.3)

Solving this equation is still problematic, since taking the derivative towards µ1 will yield
terms with µ2 (and vice versa) while these parameters needs also to be optimized. To
circumvent this problem each point is classified towards either compliant (and hence will
contribute to the normal mode) or non-compliant (and hence will contribute to the shifted
log-normal mode). This means that a and b are either 0 or 1. Equation B.3 can then be
rewritten:

log p (x|a, b,µ,σ) =
N∑
i=1

log
((
N (xi|µ1, σ1)

)ai +
(
Lognormal(xi − 0.1|µ2, σ2)

)bi

)
ai + bi = 1 for every i
ai, bi ∈ {0, 1}

(B.4)



And this equation can be simplified in such a way that only one term is present in the
logarithm:

log p (x|a, b,µ,σ) =
N∑
i=1

ai logN (xi|µ1, σ1) +
N∑
i=1

bi log Lognormal (xi − 0.1|µ2, σ2) (B.5)

When differentiating to µ1 and σ1 would use only the first term, while differentiating to
µ2 and σ2 will need only the second.

B.1 Solving for the paramaters

B.1.1 MLE for the mean of the normal mode

∂ log p (x|a, b,µ,σ)
∂µ1

=∂
∑N
i=1 ai logN (xi|µ1, σ1)

∂µ1

=
N∑
i=1

∂ ai
(
−1

2 log
(
2πσ2

1
)
− (xi−µ1)2

2σ2
1

)
∂µ1

=
N∑
i=1

ai
xi − µ1
σ2

1
= 0

(B.6)

This last equality is equal to:

N∑
i=1

aixi =
N∑
i=1

aiµ
∗
1 → µ∗1 =

∑N
i=1 aixi∑N
i=1 ai

(B.7)

B.1.2 MLE for the standard deviation of the normal mode

∂ log p (x|a, b,µ,σ)
∂σ2

1
=

N∑
i=1
ai

(
− 1

2σ2
1

+ (xi − µ1)2

2σ4
1

)
= 0 (B.8)

N∑
i=1

ai

(
−1 +

(
xi − µ2

1
)2

σ2
1

)
= 0 (B.9)

N∑
i=1

ai =
N∑
i=1

ai
xi − µ1
σ2∗

1
(B.10)

σ2∗
1 =

∑N
i=1 ai (xi − µ1)2∑N

i=1 ai
(B.11)



B.1.3 MLE for the mean of the shifted lognormal mode

∂ log p (x|a, b,µ,σ)
∂µ2

= ∂
∑N
i=1 bilog Lognormal

(
xi − 0.1|µ2, σ

2
2
)

∂µ2

=
N∑
i=1

∂ bi
(
− log(xi − 0.1)− 1

2 log(2σ2
2π)− (log(xi−0.1)−µ2)2

2σ2
2

)
∂ µ2

=
N∑
i=1

bi
log(xi − 0.1) + µ2

σ2
2

= 0

(B.12)

µ∗2 =
∑N
i=1 bi log(xi − 0.1)∑N

i=1 bi
(B.13)

B.1.4 MLE for the standard deviation of the shifted lognormal mode

∂ log p (x|a, b,µ,σ)
∂σ2

=
N∑
i=1

bi

(
− 1

2σ2
2

+ (log(xi − 0.1)− µ2)2

2σ4

)

=
N∑
i=1

bi
(
σ2

2 − (log(xi − 0.1))2
)

= 0

(B.14)

σ2∗
2 =

∑N
i=1 bi (log(xi − 0.1)− µ2)2∑N

i=1 bi
(B.15)

B.2 Using responsibilities

Another way to interpret the MLEs for the mean of both modes is the following:

µ∗1 =
∑
i∈Ccompliant

xi

Ncompliant
σ2∗

1 =
∑
i∈Ccompliant

(xi − µ1)2

Ncompliant

µ∗2 =
∑
i∈Cnon-compliant

log (xi − 0.1)
Nnon-compliant

σ2∗
2 =

∑
i∈Cnon-compliant

(log (xi − 0.1)− µ2)2

Nnon-compliant

(B.16)

Here Ncompliant denotes the total number of compliant points. It is clear that µ1 and σ1
are determined using points in the compliant class, while µ2 and σ2 are determined with
the use of non-compliant points. All points i with xi ≤ 0.1 are assigned to the compliant
class.
Instead of using a hard classification, the responsibilities given in equation 3.14 could be
used. They are the posterior probability of a point belonging to either compliant or non-
compliant class. In the case of xi < 0.1 every point is classified to the normal mode, since
the lognormal mode has support xi ∈ (0.1,∞).
The maximum likelihood estimator becomes thus a weighted mean or standard deviation.
Points with a high probability for the compliant class will influence µ1 larger than points
with a lower probability. The Nk in equation B.16 are now changed to the effective total
points in a class, which is given for class k by ∑N

i=1 γi,k. Finally, the MLEs becomes equal
to the ones given in Equation 3.15.



Appendix C

Parameters of the bimodal
distribution during EM-algorithm

In Figure C.1 the parameters are shown as they are updated in each iteration of the
EM-algorithm. After 50 iterations the parameters became stable.
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Figure C.1: The value of the parameters during the iterations of the EM-algorithm.



Appendix D

R Code for fitting the bimodal
normal-lognormal distribution
with EM

library(dplyr)
library(readxl)
library(ggplot2)
library(MASS)
Ships <- read_excel("˜/Ships.xlsx")
Measurement <- read_excel("˜/Measurements.xlsx", guess_max = 8049)
Measurement$Manual <- ((0.232 * Measurement$SO2) / Measurement$CO2)
compliant <- Measurement %>% tbl_df %>% filter(!is.na(Compliant)) %>%

pull(Compliant) %>% as.logical()
FSC <- Measurement %>% tbl_df %>% filter(!is.na(Compliant))
%>% pull(FSC)
FSC_SD <- Measurement %>% tbl_df %>% filter(!is.na(Compliant))
%>% pull(FSC_SD)
agency <- Measurement %>% tbl_df %>% filter(!is.na(Compliant))
%>% pull(Agency)

# Initial parameters
d <- data.frame(compliant, FSC, FSC_SD, agency)
i <- list(n = length(FSC), mu = mean(FSC), sd = sd(FSC),
n_c = sum(compliant), mu_c = mean(FSC[compliant]),
sd_c = sd(FSC[compliant]), n_nc = sum(!compliant),
mu_nc = mean(FSC[!compliant]), sd_nc = sd(FSC[!compliant]),
p_c = sum(compliant) / length(FSC), p_nc = sum(!compliant) / length(FSC),
max_c = max(FSC[compliant]), min_nc = min(FSC[!compliant]))
f <- coef(fitdistr(d$FSC[!d$compliant] - .1, "log-normal"))
m2 <- f[[’meanlog’]]
s2 <- f[[’sdlog’]]
pi <- i$p_nc
o <- .1 # Offset
m1 <- i$mu_c



s1 <- i$sd_c
rm(d, i, f)

# Used functions
dnorm2 <- function(x, m, s, f){f * dnorm(x, m, s)}
# Returns f * dnorm(x, m, s)
dlnorm2 <- function(x, m, s, o, f){

x[x <= o] <- 0
x[x > o] <- f * dlnorm(x[x > o] - o, m, s)
return(x)} # Returns f * dlnorm(x, m, s) (and 0 if x<0)

ln2 <- function(x){
x[x <= o] <- 0
x[x > o] <- log(x[x > o])
return(x)

} # Adapted in order to prevent warning from negative x in log(x)
E <- function(y, m1, s1, m2, s2, pi){

a <- dlnorm2(y, m2, s2, o, pi)
return(a / (a + dnorm2(y, m1, s1, 1 - pi)))} #Calculate responsibilities

plot <- function(m1, s1, m2, s2, pi){
b <- 0
e <- .5
n <- 1000
x <- data.frame(x = seq(from = b, to = e, length.out = n))
tot <- function(x, m1, s1, m2, s2, pi, o){

dnorm2(x, m1, s1, 1 - pi) + dlnorm2(x, m2, s2, o, pi)}

ggplot(data.frame(d), aes(d)) +
geom_histogram(aes(y = ..density..), binwidth = .01) +
stat_function(aes(x), x, "line", fun = dnorm2, n = n, color = "green",

size = 1.2, args = list(m = m1, s = s1, f = 1 - pi)) +
stat_function(aes(x), x, "line", fun = dlnorm2, n = n, color = "red",

size = 1.2, args = list(m = m2, s = s2, o = .1, f = pi)) +
stat_function(aes(x), x, "line", fun = tot, n = n, linetype = "dotted",

size = 1.2, args = list(m1 = m1, s1 = s1, m2 = m2, s2 = s2,
pi = pi, o = o)) +

coord_cartesian(c(b, e)) +
xlab("FSC (% m/m)")

}

# Maximum likelihood estimators
ml_m1 <- function(y, g){sum((1 - g) * y) / sum(1 - g)}
ml_s1 <- function(y, g, m1){sqrt(sum((1 - g) * (y - m1)ˆ2 / sum(1 - g)))}
ml_m2 <- function(y, g, o){sum(g * ln2(y - o)) / sum(g)}
ml_s2 <- function(y, g, m2, o){sqrt(sum(g * (ln2(y - o) - m2)ˆ2) /sum(g))}

# Data import
d <- Measurements %>% tbl_df %>% filter(FSC > 0) %>% pull(FSC)



# Iterate over EM-algorithm
print(plot(m1, s1, m2, s2, pi))
for (i in seq(from = 1, to = 5)){

g <- E(d, m1, s1, m2, s2, pi)
pi <- sum(g) / length(d)
m1 <- ml_m1(d, g)
s1 <- ml_s1(d, g, m1)
m2 <- ml_m2(d, g, o)
s2 <- ml_s2(d, g, m2, o)
print(plot(m1, s1, m2, s2, pi))

}



Appendix E

Validation

Validation is required to know the robustness and accuracy of the used measurement
set-ups. It can be performed by measuring a certified reference. Since in the case of fuel
bunkers there is not really a certified reference available, good cross references were sought.
In Table E.1, only cross references with ILT were used. This is because ILT boarded the
ship, took a sample and analyzed it either directly with a handheld XRF or sent it to
the laboratory. In the latter case also XRF is used. The laboratory had received an ISO
8217:2017 certification. The handheld XRF was validated using the same samples sent to
the laboratory.
It happened sometimes that ILT measured multiple engines. These measurements are
shown as duplicates.



Table E.1: Cross-validated measurements

Measurement by operator On-board inspection

Date Operator FSC (wt.%) Label1 Date FSC (wt.%)
2016-08-12 TNO 0.1±0.021 Compliant 2016-08-11 0.093
2016-11-17 TNO 0.06±1.34 Compliant 2016-11-16 0.092
2016-09-27 TNO 0.29±0.07 Non-compliant 2016-09-27 0.098
2016-09-11 Explicit 0.14±0.03 2016-09-13 0.102
2016-11-18 TNO 0.03±0.88 Compliant 2016-11-17 0.034
2016-11-22 TNO 0.17±0.03 Non-compliant 2016-11-23 0.079
2016-08-13 TNO 0.03±0.01 Compliant 2016-08-11 0.062
2016-09-10 TNO 0.02±0.01 Compliant 2016-09-13 0.152
2016-09-10 Explicit 1.06±0.15
2016-08-22 TNO 0.14±0.02 Non-compliant 2016-08-23 0.092
2016-11-19 TNO 0.26±0.04 Non-compliant 2016-11-21 0.074
2016-11-17 TNO 1±8 Non-compliant 2016-11-18 2.27
2016-07-20 TNO 0.53±0.11 Non-compliant 2016-07-21 0.068
2016-12-21 TNO 0.04±0.01 Compliant 2016-12-20 0.078
2016-11-17 TNO 0.03±0.46 Compliant 2016-11-18 0.16
2016-12-07 TNO 0.1±0.02 Compliant 2016-12-08 0.067
2016-08-20 TNO 0.15±0.03 Non-compliant 2016-08-22 0.101
2016-07-10 TNO 0.16±0.03 Non-compliant 2016-07-11 0.0963
2016-07-12 TNO 0.14±0.03 Non-compliant
2016-11-19 TNO 0.05±0.01 Compliant 2016-11-17 0.036
1 As given by the operator
2 Same ship measured by different operators.
3 Same ship measured two times.



Appendix F

Mismatch in calculated fuel sulfur
content

Some operators such as BSH/ University of Bremen and TNO reported both the SO2,
CO2 and FSC. While TNO reported values of FSC that were according to Equation 2.1,
BSH/ University of Bremen did not. In the data of BSH/ University of Bremen, about 7 %
of the measurements contained a negative SO2. However, a negative FSC was reported
no single time. A NOx correction could be a good explanation for this discrepancy. But
Figure F.1 shows no relation between the mismatch between the calculated and reported
FSC and the NO or NO2 values.
Since the deviations are minor and occurs only under 0.1 wt.%, the deviations were ignored.
Further research at BSH/ University of Bremen, could be useful.



Figure F.1: Mismatch between reported and calculated FSC in the measurements from
BSH. There is no clear relation with the reported NO, NO2 values. Data source: BSH/
University of Bremen
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