

Human Environment and Transport Inspectorate Winistry of Infrastructure and Water Management

Understanding Behavioral Patterns in Truck Co-Driving Networks

Gerrit Jan de Bruin ^{1,2}, Cor J. Veenman ¹, H. Jaap van den Herik ¹, and Frank W. Takes ¹

¹Leiden University

²Ministry of Infrastructure and Waterstate, The Netherlands

Complex Networks, Cambridge, UK, December 12, 2018

Introduction

Human Environment and Transport Inspectorate Ministry of Infrastructure and Water Management

Problem statement

Obtaining a better understanding of the human behavior of truck drivers through analyzing their co-driving behavior as a network.

Motivation

- Grip on autonomous driving.
- Reduce traffic congestion.

With the use of **network science**.

de Bruin *et al.* — Understanding Behavioral Patterns in Truck Co-Driving Networks — Complex Networks 2018

t l

v

zip

Data

- 900,000 trucks
- 10,000,000 measurements
 - License plate (identifier)
 - Time stamp
 - Location
 - Speed
 - For Dutch trucks:
 - Maximum allowed mass m
 - Truck place of origin
- 17 measurement locations
- 1 year of measurements

Co-occurrence of trucks *a* and *b* takes place if two trucks are at the same place, i.e., their location attribute is identical, so $\ell_a = \ell_b$.

Co-occurrence of trucks *a* and *b* takes place if two trucks are at the same place, i.e., their location attribute is identical, so $\ell_a = \ell_b$.

Co-driving trucks are those co-occurrences (a, b) of trucks that take place within a time window of at most Δt_{max} , so $|t_a - t_b| \leq \Delta t_{max}$.

Co-occurrence of trucks *a* and *b* takes place if two trucks are at the same place, i.e., their location attribute is identical, so $\ell_a = \ell_b$.

Co-driving trucks are those co-occurrences (a, b) of trucks that take place within a time window of at most Δt_{max} , so $|t_a - t_b| \leq \Delta t_{max}$.

Systematically co-driving trucks are those co-driving trucks (a, b) occurring $\Theta = 2$ times.

Human Environment and Transport Inspectorate Ministry of Infrastructure and Water Management

The weighted co-driving network G = (V, E) consists of vertices V (the trucks) and edges E. The latter is the set of all trucks involved in systematic co-driving at least 2 times.

Human Environment and Transport Inspectorate Ministry of Infrastructure and Water Management

The weighted co-driving network G = (V, E) consists of vertices V (the trucks) and edges E. The latter is the set of all trucks involved in systematic co-driving at least 2 times.

The weight $w_{a,b} \ge 2$ (for a given truck pair $(a, b) \in E$) indicates the number of times the two trucks drove together.

The **weighted co-driving network** G = (V, E) consists of vertices V (the trucks) and edges E. The latter is the set of all trucks involved in systematic co-driving at least 2 times.

The weight $w_{a,b} \ge 2$ (for a given truck pair $(a, b) \in E$) indicates the number of times the two trucks drove together.

But how to choose the parameter Δt_{max} ?

Network Construction

Human Environment and Transport Inspectorate Ministry of Infrastructure and Water Management

for different values of Δt_{max} .

Network Construction

Network Statistics

Table: Statistics for full and regional network and their giant component (GC).

Metric	Full Network	Regional Network
Number of nodes	65,290	35,706
Number of nodes (GC)	37,858	22,511
Number of edges	68,958	36,885
Number of edges (GC)	51,730	30,851
Density	$3.2 imes10^{-5}$	$5.8 imes10^{-5}$
Density (GC)	$7.2 imes10^{-5}$	$1.2 imes10^{-4}$
Diameter (GC)	31	28
Average distance (GC)	9	9
Clustering coefficient	0.06	0.07
Power law exponent	3.58	3.61

Degree and Weight Distribution

Degree and Weight Distribution

Human Environment and Transport Inspectorate Ministry of Infrastructure and Water Management

But what kind of links are present in this network?

Attribute Assortativity

Human Environment and Transport

Table: Assortativity of node attributes

Attribute a	Туре	Full Network	Regional Network
country	17 categories	0.56	-
\tilde{v}	numeric	0.55	0.34
n_ℓ	numeric	0.45	0.40
m _{max}	numeric	-	0.35
company	numeric	-	0.29
zip4	1,975 categories	-	0.32
zip1	9 categories	-	0.41

Attribute Assortativity

Table: Assortativity of node attributes

Attribute a	Туре	Full Network	Regional Network
country	17 categories	0.56	-
\tilde{v}	numeric	0.55	0.34
n_ℓ	numeric	0.45	0.40
m _{max}	numeric	-	0.35
company	numeric	-	0.29
zip4	1,975 categories	-	0.32
zip1	9 categories	-	0.41

Do trucks with similar attributes cluster?

How to decide on a good resolution?

Understanding Communities

Human Environment and Transport Inspectorate Ministry of Infrastructure and Water Management

$$R = \frac{1}{|C|} \sum_{c} \max_{a} r_{a}^{G(c)}$$

c ∈ C: a single community
 r_a^{G(c)}: assortativity of attribute a in induced subgraph G(c) with nodes from community c

Understanding Communities

Human Environment and Transport Inspectorate Ministry of Infrastructure and Water Management

$$R = \frac{1}{|C|} \sum_{c} \max_{a} r_{a}^{G(c)}$$

c ∈ C: a single community
 r_a^{G(c)}: assortativity of attribute a in induced subgraph G(c) with nodes from community c

With higher resolution communities are more dominated by the assortativity of attributes.

Conclusion

- First understanding of co-driving behavior of truck drivers.
- We observed real-world network structure with high modularity.
- Edges in the network were explained using various (geo-)attributes.
- Possible societal impact in reducing traffic congestion and optimizing fuel usage
- Future work: network dynamics and applying knowledge in infrastructure domain

de Bruin et al. — Understanding Behavioral Patterns in Truck Co-Driving Networks — Complex Networks 2018 14 / 14

https://cns.liacs.nl

Validation

Regional Attributes

- city where the truck is registered
- empty mass *m_{empty}* of the truck
- maximum mass m_{max} of the truck
- capacity of the truck
- company that owns the truck
- registration date (regdate)
- the 4-digit (postal) zip code of where the vehicle is registered.
 Attributes zip₁, zip₂, zip₃ and zip₄ each indicate the location with a higher geographic precision.

